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AN ALGORITHM FOR THE ASYMPTOTIC SOLUTION OF A SINGULARLY PERTURBED 
LINEAR TINE-OPTIMAL CONTROL PROBLEM* 

A.I. KALININ 

An algorithm for the approximate solution (in the asymptotic sense) of a 
singularly perturbed linear time-optimal control problem is proposed. A 
computational procedure is outlined, which permits the use of the 
resulting asymptotic approximation for the exact solution of the problem 
with a prescribed value of the small parameter. 

1. Statement of the problem. In the class of scalar piecewise-continuous controls, we 
consider the following optimal control problem for a time-independent linear system: 

x’ = A (p) x + b (p) u, 5 (0) = 9, I (7') = 0 
lu(t)I.<l, J(u)= T-+min 

(l.l), 



696 

where u is a small positive parameter, 2 is an n-vector, y is an m-vector; the other elements 
of the problem have the appropriate dimensions. The following conditions are assumed to hold: 

a) the matrix A,is stable, i.e., the real parts of all its eigenvalues are negative. 

b) rank (b,, A,b,, . . ., A:-‘b,) = n. 

Problem (1.1) and its generalizations have been the subject of many publications (e.g., 
/l-4/). Most of the studies published to date are qualitative in nature.In particular, it has 
been shown that as u-t0 the terminal time T"(u) in problem (1.1) tends to the terminal 
time T” in the problem 

. . 

y’ = A,y + b,u, Y (0) = Y’, Y (T) = 0 
1 u (t)I Q 1, J, (u) = T-t min 

A, = A, - A&‘A,, b, = b, - A&-lb1 

As to optimal control switching points in the singularly perturbed 
are close to the corresponding switching points in problem (1.2), while 
the terminal time T”(p) by an amount of the order of u. In some cases 
points may appear, concentrated in the vicinity of the initial time. 

(1.2) 

problem, some of them 
the others lag behind 
additional switching 

Definition. A piecewise-continuous control u(t, p), t~(0, T(p)] satisfying the constraint 
lu(t,P)I<~, t~[O,T(u)l is said to be asymptotically N-optimal in problem (1.1) if the 

trajectory z (t, p), Y 0, IQ, t E [O, T (IL)] which it generates satisfies the conditions z (T (p), 

p) = 0, (pN+'), Y (T(p), u) = 0, (ccN+'), and T(P) - 2'" (u) = O,(pN+‘). 

In this paper we propose an algorithm which, given a natural number N, constructs an 
asymptotically N-optimal control for the problem in question. Essentially, the algorithm 
determines the asymptotic behaviour of optimal control switching points and the time To (p). 
The computational procedure is based on the direct support method of /5/ for solving linear 
optimal control problems and on the boundary-function method of /b/. In addition, we shall 
show how to use the asymptotic approximations produced by the algorithm to obtain an exact 
solution of problem (1.1) for prescribed values of the small parameter. 

2. First basic problem. The first block of the algorithm solves problem (1.2), which we 
shall call the "first basic problem". We shall assume that 

c) problem (1.2) has a solution and is "simple" /7/. 
The solution is obtained using the direct support method of /5/. After a finite number 

of iterations of the direct and adjoint systems, we obtain: 

1) the optimal time T”; 
2) an optimal control and a trajectory, u"(t), y"(t), TV [O, T”1; 
3) a support {Q', . . . . z%_,}, i.e., a set of n - 1 distinct points in the interval 

10, T” I such that the (m x (m - 1)) matrix 

Q0 = (cpO (rjo), j = 1, 2, . . ., m - 1) (2.1) 

is of full rank, where 

'p,, (t) = F, (t) b,, t E IO, ToI (2.2) 

and F, (t), t E IO, T”1, is an (m x m) matrix-valued function satisfying the equation 

F,' = --FJ,,,, F, (TO) = E (2.3) 

4) an m-vector A", which is a non-trivial solution of the system of homogeneous linear 
algebraic equations @,'h = 0; 

5) a cocontrol A, (t) = 9" (t) b,, t E [O, T”], derived from the solution 9," (t), t E LO, T”1, 
of the adjoint system +'" = --A,,‘$‘, q,” (T”) = ho. We observe that 

A0 (t) = h"cp, (t), t E [O, ToI (2.4) 

The cocontrol is related to the optimal control by the equation u"(t)= -sgn AO(t), t E [O, 
T”], and it has the following property: A0 (tj") = 0, Ai (Zj") # 0, j = 1, 2, . . ., m - 1. Let tl’, . . ., 
Go denote all the zeros of the cocontrol, indexed in increasing order. Since the sequence 
of zeros includes the support times, it follows that l>m - 1. We shall also assume that 

d) tj” E 1 0, T” I, Ai (tr”) # 0, j = 1, 2, . . ., 1. 

3. second basic problem. The second stage of the algorithm solves the following variable- 
length optimal control problem: 

dz/dr = A,z + b,u, s .< 0, z (sl) = A,-‘b,, z (0) = 0 

lu(s)I Q 1, J,(U) -[(u(s) -+ l)ds+min 
5, 

(3.1) 
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conditions (a) and (b) are satisfied, this problem, which we shall refer to as the 
basic problem", has admissible controls. 
shall assume that 
problem (3.1) has a solution. 

Note that the point A;‘b, is the equilibrium position of a dynamic system under the 

control u (s)= -t. Therefore, in order to determine an optimal control for the second basic 
problem, it will suffice to solve the following fixed-length optimal control problem: 

dzld-s = A,z + b,u, s Q 0, z (s*) = A,-‘b,, z (9) = 3 (3.2) 

lu(s)I<*, J,(u) = i u(s)ds + min 
I)* 

where s* is a sufficiently small negative number. If sr" is an optimal initial time in 
problem (3.1), then the optimal control in problem (3.2), considered over the interval Is,', 01, 
is also an optimal control for the second basic problem, and if s<s," then u* (s) 3 -1. 

We shall assume that 
f) problem (3.2) is "simple". 
Solving it by the direct support method, we obtain 
1) an optimal control and trajectory u*(s), z*(s), SE [s*,O]; 
2) a support {ul', . . . . a,"}, i.e., a sequence of n distinct points in the interval Is*, 

0 [, such that the nXn matrix 

II@ = (IIcp (ai"), i = 1, 2, . ., n) (3.3) 

called the support matrix, is non-singular, where 

ncp (4 = G (4 4 (3.4) 

and G(s), s < 0, is an nXP2 matrix-valued function satisfying the equation 

dGld.s = -GA,, G (0) = E (3.5) 

3) a vector of ootentials n. which is a solution of the following system of linear 
algebraic equations: n'IIgJ (Ui") ='-I, i = 1, 2,. . ., fl; 

4) a cocontrol IIA (s) = rI$' (s) b, + 1, SE is*, 0.1, 
adjoint system 

where n$ (s), s<O, is a solution of the 

II* (0) = lc 

We observe that 

dII$ (s)/ds = -dl’IIv (s), 

IIA (s) = n'& (s) +1 (3.6) 

The cocontrol is related to the optimal control by the equation U* (s) = -sgn IIA (s), s E 
[s*, 01, and it has the following property: 

RA(uiO)=O, dIIA(cr,“)lds#O, i=1,2, . . . . n 

Let s,", . . ., spa denote all the zeros of the cocontrol, indexed in increasing order. 
Obviously, p > n. We shall assume that 

g) s," # 0, dIIA (sio)/ds # 0, i = 1, 2, . . ., p. 

If s* is chosen to be fairly small, then sl' is an optimal initial time and ' 0 

are optimal control switching times in problem (3.1), z* (slo)= AI-lb,, u* (s) = -1 
The function IIA (s), s< 0, 

fos,‘gyi,? 
will have no zeros other than 

for s < s,". 
SlO, . . .) spa, and moreover nh (s)> 0 

After solving the basic problems we find the vector 

v0 = A,, (2'") n - (A&‘)’ ho = h”‘b,n - (AdA,-‘)’ h” (3.7) 

The vector ho is determined uniquely apart from a positive factor. We shall assume that 
II 9 I? + II 1" IV = 1. 

4. The main theorem. Our subsequent calculations are based on the following assertions. 

Theorem. If conditions (a)-(g)are satisfied and u is sufficiently small, then problem 
(1.1) has an optimal control expressible as 

sgn A 0*(tl"), t E IO, tl[ 

sgn A,,'(tj"), t E [tj-l, tj[, j = 2, 3, . . *> l 
u”(tr p) = - sgn Ao'(tl"), t E [tl, T + p+[ (4.1) 

(- 1)i sgnA,'(tt), t E[T + ps;-l, T + nsi[, i = 2,3, . . ., P 

(- l)P+lsgn Ai( TV [T + psP, 2'1 
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where the functions 

T = T (p); t, = t, (II_), j = 1, 2, . . .( I; S{ = si (I(), 

i = 1, 2, . . ., p 

(4.2) 

have the asymptotic expansions 

T-_XpkTk, tj--Bkt,k, q--ZPkhk (4.31 

Throughout, the symbol C denotes summation from k=O to k=w. 

Let 9 0, r), t cz 10, T WI, be the vector of conjugate variables corresponding to Eq.(4.1) 
by the maximum principle /8/, 

P" = -('#I (T (P), ~0, i = 1, 2, . . ., 4’s I. = -(%+i (T (p), p), 
i = 1, 2, , . ., m)’ 

where 11 v [Ia + 1) h 11% = 1. Then the vector-functions v(u),h()~) 

v-&V, h-_u%k 

and, together with the functions (4.2), they solve the system 

have asymptotic expansions 

(4.4) 

of equations 

= (T, tr, . . ., trr SI, . . .t sp, T, 14 = 0 (4.5) 
9’ (t,, Y, h, T, P) b (14 = 0, i = 1, 2, . a ., 1 

~'(~+lrs~,v,a,T,~)b(~~)=O, i=l,2, . . ..P 
(II v II* + 11 a p)/2 - 112 = 0 

where z (t, tr, . . ,, tl, s,, . . . . s,, T, p), t=[O, T], is the trajectory of the singularly perturbed 
system generated by the initial state x(0) q 9 and the control u 0, 11, . . ., %I, 8x9 . . *I sp, T, 
r), f E IO, Tl, of type (4.1); 9 (t, v, J., T, r), t E 10, Tl is a solution of the adjoint system 

‘#‘=--A’(P)+, q(T)= “h’ I II (4.6) 

Proof. Using Cauchy's formula to represent the solution of the singularly perturbed 
system generated by the control u(t, t,, . . ., tr,s,, . . ., s,, T, p), tE IO, Tl, we obtain 

r(T,tr, . . ..~~.~,,...,~,,T,~)=F(O,T,IL)~'+ (4.7) 
tt 'I 

sgnA;(t,")~cpdt + . . . i_ sgn AO'(tlO) 1 cp dt - 
0 h-1 

sgn A&J[T~*rqdt -,... + (- 1)” f quit] 
11 T+wp 

cp = F 0, T, IL) b (P) (4.8) 

Here F (t, T, p), tE LO, Tl, is an (n + m) X (n f m) matrix-valued function, which is a 
solution of the singularly perturbed equation 

F' = -FA (F), F (T) = E (4.9) 

and exhibits the following block structure: 

where Fi = F1 (t, T, p), t E IO, Tl, i = 1, 2, 3, 4, are matrices of orders n Xn, n X m, m X n, m x m,, 
respectively. Using the boundary-function method of /6/, one can expand these matrices in 
asymptotic series 

Ft -2~’ [Fik (t, T) + %Fi (s)] (4.10) 

s = (t - T)/p, t E IO, 2'1, i = 1, 2, 3, 4 



We emphasize that these are uniform asymptotic expansions. It 
that the functions l&Fi (s),sQ Q, called the boundary terms, satisfy 

11 %Fl (S)ll< ak exP @ks), i = 1, 2, 3,4, k = 0, 1, . 
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is also essential here 
the estimates 

. . (4.11) 

where akr @k are certain positive constants. 
We will specify a few of the first terms of the expansions (4.10): 

F,, = 0, F,, = -A,-‘A,F, (t, T), F,, = 0, F,, = F, (t, T) (4.12) 

F,, = A,-‘A$,, (t, T) A,A,-l, F,, = -F, (t, T) A,A1-’ 

&F, = G (s), l&F, = G (s) A,-‘A,, l&F, = 0 

l&F, = 0, II,F, = A&-‘G (s) 

where F,(t, T), t E 10, Tl, is an m X m matrix-valued function, which is a solution of the 
equation 

F,’ = -F,A,, F, (T) = E (4.13) 

and G(s), S< 0, satisfies (3.5). 
Let 'pl (t, T, p), 'Ps 0. T, P), t E [O, TI, be vector-valued functions whose components are 

respectively the first n and last m components of ~(t, T, v). Then, as is evident from (3.4), 
(4.8), (4.10) and (4.12), we have the following uniform asymptotic expansions: 

'PI - ncP (S)/P + B pk [‘Plk (t,. T) + nk% (S)] 

‘Pa - 2 Pk [‘PZk (t, T) + nk% (S)] 

nk(P1 = nk+lFlh+ nkF,b, (Plk = FL k+&l + f’zkbzt 

%k = Fsc, kc& + Fakbm 

Note that by (2.2), (2.3), (3.4), (4.12) 

'PI,, (t, T") = --A;'&+, (% 

14.14) 

(4.15) 

and (4.13), 

t E [O, To1 (4.16) 

vector-valued functions whose 
of (4.7). As follows from (4.10)- 

(4.17) 

no’p, (s) = A,A;‘QJ (4, s Q Q 

Let z (tl, . . ., tl, Sir . . ., sp, T, p), Y (tl, . . ., tl, sir . . ., sp, T, p) be 
components are respectively the first n and lastm components 
(4.12), (4.14), (4.15), 

z-_ZtLkz,(tl, . . ., tj, Sl, . . ., Spt T) 

y -_8pk!,k (tl, * . .1 t,, sl, . .., Spr T) 

!! 

z. = - A;‘A,F, (0, T) y” + sgn AO' (tl'=) 1 'pro dt -I- . . . (4.18) 
0 

‘! T 

+ sgnAO'@,") \ ~Odt --gnA,'ttl") S ~Odt + 

)1-l 11 

sgnA&")[- 1 l-I~ds+~lh+~Js-....+(-~)p+~~ l-lcpds 
-ce S, % 

1, *1 T 
y, = F, (0, T) y” + sgn Ao’ (tl”) 5 ‘PSO dt + . . . + sgn A,,'&") S vaodt - agnAi(tlqS vao dt 

0 'l-l *I 

tr 

zk = Flk(& T)z" + F2k(0, T) y” + %'nAO'(tl") 1 qlkdt + * . . 

0 

*1 T 
f sg*AO'(t:)'i %kdt -sgnA,'(tl") 1 (Plkdt + 

Q-1 11 

sgnA;(tLo)[- 1 nk-l(PldS + $~k_l~ldS - . . . 
-co 8s 

+ (-l)p+lf nk-lq&, -2sgnA,.(t14~~~rp,,r_l(T,T)X 

&I)~- (Sk)’ + 

f=l 

. . . + (- f)p+’ (sp)‘], k = 1,2, . . . 

(4.19) 
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A similar formula is valid for yk, k>i, with the sole difference that Flk is replaced by 
F Skr F,k by Fdkt and (Plks nk-l(P1 by (Pak? nk-l% I respectively. 

Rut A (t, Y, h, 2’9 p) = $’ (t, y, A, i”, p)b (p), t E [O, Tl. As is evident from (4.6), (4.81, (4.9), 
A = pv”pl + k’cp,. But then, by (4.14), this function has a uniform asmyptotic expansion 

A --xP'[Ak (& V, k T) + &A@, v, A)] (4.20) 

& = h'cp,,, & = V“pl,k_I + h’q,,, k = 1, 2, . . 
&A = V’n(p + ~&Cp,, &A = v’&-I’pI + h’&$,, k = I, 2, . . . 

Note that (2.4), (3.6), (3.7) and (4.16) imply 

A0 (t, v’, h”, T”) = A0 (t), t E IO, T’l (4.21) 

II,A (s, v”, h”) = A0 (I”)(flA (s) - I), s < 0 

Let 6 (s, v, a, T, IL) = A (T + P, v, h, T, p), s Q 0. By (4.20) and the fact that t = T + ps, we 
have 

6 - 2 pksk (St V, h, T) (4.22) 

6, = rI,A (s, V, h) + jl$-$ Ak_i (T , v, L T) (4.23) 
i=o 

Let h = (tl, . . ., tl, sir . . ., s,, T, v,, . . ., v,, h,, . . ., A,)', where vt, i = 1, 2, . . ., n, are the 
components of v and 5, j = 1, 2, . . ., m, those of h. Then system (4.5) may be written as 

R (A, P) = 0 (4.24) 

z (tl, f f ., t1, Sl, * * *I spt T,PL) 
y (tl, . . ., tl, ~1%. . .tspt TV 14 

R (h, CL) = A (tjy V, h, T, cl), i = 192, . . -11 
6(sj,v,i,T,p), i==l,%...,p 

(II v II* + II J. II”)/2 - ‘/z 

As follows from (4.17), (4.201, (4.22) and the estimates (4.111, the left-hand side of 
Eq.(4.24) may be expanded asymptotically as 

R (A, F) = +'&(A) 

Zk (k * . ., t!, s1, . . ., sp, T) 
Yk @I7 . . ., tl, s,, . . ., spr T) 

Rk (h) = Ak (Ijt V, h, T), j = I, 2, . . ., I 

6, (Sjr V, h, T), i = 1, 2,. . . ., p 
rk b* A] 

r, = (11 ” \I2 + 11 h II”)/2 - 1/2, rk = 0, k > ‘i 

Define R (A, 0) = I?,, (A). Then the vector-valued function R (A, P) 
domain II h - ho II < rlo, 0 < P < par together with its partial derivatives 
components of h. Here nor PO are certain small positive numbers and 

(4.25) 

(4.26) 

is continuous in the 
with respect to the 

ho = @l”, . . . , tlo, h-lo, . . . , sp o T”, vIo, . . . , v,,O, h;, . . . , Am’)‘. , 

Relying on the fact that the controls u" (t). t E (0, 2’7, U* (s), s E [SC, 01, are admissible in 
problems (1.2), (3.1) and also on (4.16), (4.181, (4.191, (4.21), (4.23), (4.26), one can show 
that R (ho, 0) = R, (ho) = 0. 

It can be shown by direct differentiation that the Jacobian of system (4.24) has the 
following structure: 

B, B, c1 0 0 

B, 0 c2 0 0 

I, = B, 0 c3 0 B> 

0 B, 0 B, B, 

0 0 0 v”’ X”’ 

(4.27) 
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B, = (-ZA,-lA,cp, (tj”) sgn A; (tj9, j = I, 2, . . -$ 1) 
B, = (2 (--l)NIcp (~0) sgn A; (tr“), i = 1, 2, . . .t P) 

I B, = (2q, (t,“) sgn Ai (t,“), j = 1, 2, . . ., 0 
B, = diag (A,' (t,"), j = 1, 2, . . ., Z), B, = (‘~0 (tj?v j = 1, 29 . * a* 1)’ 

B,, = diag(A, (T“)dIIA(s,")/ds, i = 1,2, . . .I P) 

B, = (l-I’p (~4, i = 1, 2, . . ., p)‘, B, = (A~AI-‘WJ (~7 + bw 
i = 1, 2, . . ., p) 

c1 = A,-‘/i,bO sgn Ao’ (t:), c, = -4, sgn A,’ @lo) 

c3 = (k”A,cp, (ty), j = 1, 2, . . ., l) 

Using the fact that the matrices (2.1), (3.3) have full rank, one can show that the rank 
of the matrix obtained from (4.27) by deleting the last row and the Z_+ p -l-1 -th column is 
z+p+n+m--l. Since 

k"cp, (t,") = A0 (t,“) = 0, j = 1, 2, . . ., 1; v”‘Hcp (8:) + 

hP’Agl;TIcp (st) + h”b, = A, (2”) IIA (~10) = 0, i = 1, 2, . . ., p 

all the rows of this matrix are orthogonal to the vector (O,O,v"',ho'~. Hence it follows that 
the columns of I,, with the exception of the (I + p + 1) -th, are linearly independent. More- 
over, they are orthogonal to the vector (O,h"',O,O,O). But the 
orthogonal to this vector, since h”‘b, = A, (T”)# 0, 

1 +p + I -th column is not 
implying that the Jacobian is non-singular. 

Thus, syStem(4.24) or, what is the same,(4.5) satisfies all the conditions of the Implicit 
Function Theorem. This means that for sufficiently small p problem (1.1) has an admissible 
control .JP (t, p), t E LO, T (p)l, of the type (4.11, and there exist vectors Y(P), h(p) such that 
the switching points ofu”(t, @are the zeros of the function A (t, P) =$' 0, IL) b(p), 3 E [O, T WI, 

where 9' (t, p), t E LO, T @)I, is a non-trivial solution of the adjoint system (4.6) with 
T = T (p), v = v (II), h = h (p). 

Since the left-hand sides of system (4.5) can be expanded, in asymptotic series in integer 
powers of P, it follows /9/ that the asymptotic expansions (4.3), (4.4) exist. 

Note that A (t, P) = A (t, v (10, h (P), 2' (P), P), t E IO, T (p)l. Hence it follows from (4.201, 
(4.21) that there exists a constant C>O for which 

1 A (t. p) - Ao (t) - Ao (TWA (4 - 1)I Q CY 
s = (t - T (p))/k, t E [O, T (@I 

Relying on this fact, assumptions (d) and (g) and the remarks in Sect.3 about the function 
nA (s), s < 0, one can show that for sufficiently small )I the ,cocontrol A@, CL), tE IO, 2' (P)], 
has no zeros other than the switching points of the control u'(t, p), tE [(I, T (pL)l, where 
9 (t, CL) = - sgn A (t, p), t E (0, T (p)l. But this means that for sufficiently small p the admissible 
control u0 (t, p), t E IO, T (p)J satisfies the Pontryagin Maximum Principle /8/, and so it is an 
optimal control. This completes the proof of the theorem. 

5. Construction of asymptotic expmh5ns. A control of type (4.1) with ti = tj’, j = 1,2, 
. . ., 1; si = st, i = 1, 2, . . ., p; T = T” is an asymptotically O-optimal control for problem (1.1). 
To contruct an N-optimal control (N>l!, it suffices to find the coefficients 

tlk , j = 1, 2, . . ., 1; slk, j = 1, 2, . . ., p; Tk, k = 1, 2, . . ., N (5.4) 

of the expansions (4.3). Let 

h, = (tlk, . . .( t,“, Slk, . . .I spk, Tk, Vlk, . . ., v, , k ah‘ 
1 , . . ., h,,,k)’ 

hN @) = 8, pkhk 

Throughout, ZN denotes summation from k=O to k=N. Expand the vector-valued func- 

tion xNpkf& (hN (p)) in powers of ~1 up to order N inclusive and equate the expansion coefficients 
to zero. This gives non-singular systems of linear equations for successive determination of 
the vectors h,, k = 1, 2, . . ., 11’: 

I&h, = --RI (ho) 

I&, = - $ (h,) h, - + h,’ s (h,) h, - R, (h,) 

(5.2) 
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We note that thanks to the structure of the Jacobian 
(5.2) splits: we first use a system of order n i-m+ 1 

I, (see (4.27)) each of systems 

hk and then, 
to determine the coefficients Tk,vk, 

1, 2, . . ., p. 
independently, determine the remaining coefficients 
If l=m-I,p=n, i.e., 

t*k, j = 1, 2, . . ., 1; q, i= 
if the cocontrols of the basic problems have no 

zeros that are not support points, the initial system (4.5) splits: the optimal time and 
switching times (4.1) can be found independently of the Lagrange multipliers. 
implies a corresponding decomposition of systems (5.2). 

This naturally 

Successively solving systems (5.2), we find the coefficients (5.1) and construct 
nomials 

PolY- 

TN (p) = TN pkTk, tjN(p)=xNpktlk, j=f,,2,...,l 

s,N(p)=&pkSiky i =1,2,*-.,~ 

The control (4.1) , where tJ = tJ”(p), j = 1, 2, , . ., 1; St = SiN (p)* i = 1, 2, . . ., p; T = TN (p), 
is an asymptotically N-optimal control for problem (1.1). 

The above asymptotic ,approximations to the roots of Eq.(4.24) can be used for 
the exact solution of the equation and hence of the problem as a whole, for a prescribed value 
of the small parameter. To that end one uses the "updating" procedure of /5/, i.e, Newton's 
method, to find the roots of Eq.(4.24), taking hN(p) as the initial approximation. When 
this is done the matrix aR(h, p)/ah can be replaced by its asymptotic expansion, whose coef- 
ficients are determined from those of the expansion (4.25). 

We might mention in conclusion that there-are no essential difficulties in devising an 
analogous algorithm for multidimensional control systems. 

6. Exumple. Consider the following example, which describes the control of a DC motor 
/2/: 

pz.=-z++bhllL. z(O)=z", z(T)=0 

y.=k,Z- 
l+k 

&" u(0)=YO* br(F)=O 

]~]<i, J(u)=T-+min 

(6.1) 

All constants in problem (6.1) are positive. 
totically O-optimal control: 

Applying our algorithm, we find an asymp- 

IJ (6 p) = I -1, tE[O, T"+ps"[ 1, tE[TO+p.s", TO] 

and a l-optimal control: 

qt. P) = -1, t E [O. TO + p (T’ + s”) + $51 [ 
1, t E [T” + p (T’ + SO) + p’s’, TO + pT’] 

T= = in (1 + y’lb,), bo = k,b,/(l + k), so = -In 2 

T= = -yJb,, s1 = -ky,lk,b, - z,lb, 

a, = +_(I + 39 - exp (-TO)) - * (1- exp(--TO)+ T"exp(--TO))+ 

k :"1",';)!"' (1 -- exp(--TO))- &xp(-T') zo+2~ yo - 
( 

kT”y” 
-) k, 

y, = ‘w (kd + ky’- ky”To) - $ (1 - exp (--TO) + To erp (--TO)) + 

bo (2 - 29 - exp (--TO)) 
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STABILIZATION OF WEAKLY LINEAR SYSTEMS* 

V.A. KOLOSOV 

The problem of stabilizing bilinear systems, characterized by the 
presence of a small parameter in the bilinear part of the system, is 
considered. The result is an approximate method for synthesizing a 
stabilizing control /l-3/ in bilinear systems, in the case of a 
performance index, Estimates are derived for the error with respect to 
the performance index. 

1. Statement of the problem. Suppose we are given a bilinear control system 

j=EN(t)~u+B(t)u;sEIi,; s(O)=z,;t>O (1.Q 

Here N (t) is a measurable and bounded nxn matrix for t>o; B (0 E Rn is a vector- 
valued function, also measurable and bounded for t>O. The problem is to determine a scalar 
control in the class U of bounaea controls u = u @,I), E> 0 is a small parameter. 

We wish to synthesize an optimal control in class U, which stabilizes system (1.1). The 
performance index is 

I (rt) = S{s'Q(t)z + h(t)-‘uydt P-3 

Here Q (t) is a continuous, hounded, uniformly Positive definite n x n matrix, and h ff) 
is a positive definite scalar function; the prime denotes transposition. Integration with 
respect to t is always from 0 to 00, 

2. Successive approz~tions aZgotithmnt. Let us assume that for the values of e under 
consideration problem (1.11, 11.2) has a solution. Bellman's equation is 

inf ltW/dt + U (B (t) + t.V t)z)‘W/tkc -+ .dQ (t)r + X (t)-1U21 = 0, (2-l) 
u&J 

(V = v (2, 8)) 

It follows from (2.1) that the following expression defines an optimal control: 

u*(t,x) -= - + h (t) (B (t) + EN (t) x)’ dV/Sx (2.2). 

Expand the function Ii in powers of E: 

v=.v,(t,,t)+ev~(t,z)+... 

~FrikZ.Matem.~ekhan.. 53,6,890-894,1989 

(2.3). 


