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AN ALGORITHM FOR THE ASYMPTOTIC SOLUTION OF A SINGULARLY PERTURBED
LINEAR TIME-OPTIMAL CONTROL PROBLEM*

A.I. KALININ

An algorithm for the approximate solution (in the asymptotic sense) of a
singularly perturbed linear time-optimal control problem is proposed. A
computational procedure is outlined, which permits the use of the
resulting asymptotic approximation for the exact solution of the problem
with a prescribed value of the small parameter.

1. Statement of the problem. 1In the class of scalar piecewise-continuous controls, we

consider the following optimal control problem for a time-independent linear system:

r=AWz+dbWu 20 =2, 2(I)=0 1.4y
jlu@®<<t, J@u =7T->min
Ajp 4 b °
aw=|" A w =t =] #=I7
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where y is a small positive parameter, z is an n-vector, y is an m-vector; the other elements
of the problem have the appropriate dimensions. The following conditions are assumed to hold:
a) the matrix A, is stable, i.e., the real parts of all its eigenvalues are negative.

b) rank (b;, Aiby, . .., AT7B) = n.

Problem (1.1) and its generalizations have been the subject of many publications (e.g.,
/1-4/) . Most of the studies published to date are gualitative in nature. In particular, it has
been shown that as p— 0 the terminal time 7°(p) in problem (1.1) tends to the terminal
time 7° in the problem

y=Awy+ by, y0 =p° y(T)=0 (1.2)
Ju ()] <1, Jo@ = T— min
Ag= A, — AA 4y, by = b, — AA b,

As to optimal control switching points in the singularly perturbed problem, some of them
are close to the corresponding switching points in problem (1.2), while the others lag behind
the terminal time 7°(p) by an amount of the order of u. In some cases additional switching
points may appear, concentrated in the vicinity of the initial time.

Definition. A piecewise-continuous control u (¢, p), t= (0, 7 (u)] satisfying the constraint
lut, wl <1, t[0, T (pl is said to be asymptotically N-optimal in problem (1.1) if the
trajectory z (¢, u), y (¢ p), t<=10, T ()] which it generates satisfies the conditions sz (T (u),

W) =0y (559), ¥ (T (1), ) = Oy (B™), and T () — I° () = O, (uN+Y).

In this paper we propose an algorithm which, given a natural number N, constructs an
asymptotically N-optimal control for the problem in question. Essentially, the algorithm
determines the asymptotic behaviour of optimal control switching points and the time 7° (p).
The computational procedure is based on the direct support method of /5/ for solving linear
optimal control problems and on the boundary-function method of /6/. 1In addition, we shall
show how to use the asymptotic approximations produced by the algorithm to obtain an exact
solution of problem (1.1) for prescribed values of the small parameter.

2. First basic problem. The first block of the algorithm solves problem {1.2), which we
shall call the "first basic problem". We shall assume that

c) problem (1.2) has a solution and is "simple" /7/.

The solution is obtained using the direct support method of /5/. After a finite number
of iterations of the direct and adjoint systems, we obtain:

1) the optimal time 7T°;
2) an optimal control and a trajectory, u°(t), y° (t), t = [0, T°l;

3) a support {%,° ..., Tma}, i.e., a set of m — 1 distinct points in the interval
10, 7°[  such that the (m X (m — 1)) matrix
Oy=(po(v,), =12, .., m—1) (2.1)
is of full rank, where
Qo (}) = Fy (1) by, te= 0, T° 2.2)
and F, (1), t=1[0,7T°], is an (m X m) matrix-valued function satisfying the equation
Fy = —Fody, Fo(T°)=E (2.3)

4) an m-vector A°, which is a non-trivial solution of the system of homogeneous linear
algebraic equations @,'A = 0;
5) a cocontrol A, (f) =% (t)b,, t= [0, I°], derived from the solution ¢°(8), t = [0, T°],

of the adjoint system ¢° = —A,9° ¢°(7°) = A°. We observe that
Ao () = Mo, (1), te 0, T° 2.4
The cocontrol is related to the optimal control by the equation u° (f) = —sgn A, (t), t& 10,
T°], and it has the following property: A, (1) =0, Ay (3,90, j=1,2,..., m —1. Let ° ...,

t,° denote all the zeros of the cocontrol, indexed in increasing order. Since the sequence
of zeros includes the support times, it follows that [>>m — 1. We shall also assume that

d) tJOEIO’ To{v Ao.(tfo)#oy i=12 ..., l.

3. Second basic problem. The second stage of the algorithm solves the following variable-
length optimal control problem:

dz/ds = Az + bu, s$<0, z(s) =4,*b, z(0)=0 3.1)

lu )| <1, T ()= S(u (s) + 1) ds— min
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If conditions (a) and (b) are satisfied, this problem, which we shall refer to as the
"second basic problem", has admissible controls.

We shall assume that

e) problem (3.1) has a solution.

Note that the point A,;7b, is the equilibrium position of a dynamic system under the
control u(s)== —1, Therefore, in order to determine an optimal control for the second basic
problem, it will suffice to solve the following fixed-length optimal control problem:

dofds = Ayz + bu, s<0, z(*) = A b, z()) =0 (3.2)
0
lu@}<t, 7Ty@ = u(s)ds—min

re

where s* is a sufficiently small negative number. If ° is an optimal initial time in
problem {3.1), then the optimal control in problem (3.2), considered over the interval [s,°, 0},
is also an optimal control for the second basic problem, and if s<Cs° then u* (s)= —1.

We shall assume that

f) problem (3.2) is "simple".

Solving it by the direct support method, we obtain

1) an optimal control and trajectory u*(s), z* (s), s = [s*, 0];

2) a support {g,° ..., 0,°}, i.e., a sequence of n distinct points in the interval |s*,
ol such that the n X n  matrix
o = (p (0;°), i =1,2, ..., n) (3.3)
called the support matrix, is non-singular, where
Ho (s) = G (s) b (3.4)
and G (s), s<(0, isan n Xn matrix-valued function satisfying the equation
dGlds = —GA,, G (0) =E (3.5)
3) a vector of potentials m, which is a solution of the following system of linear
algebraic equations: n'llgp (0,°) = —1,i=1,2,..., n;

4) a cocontrol IIA (s) =IIY' (s) b, + 1, s=[s*, 0, where IIP(s), s {0, is a solution of the
adjoint system

dllp (s)/ds = —A4,'IPp (), Ip (0) ==

We observe that

IMA (s) = n'le (s) + 1 (3.6)

The cocontrol is related to the optimal control by the equation u* (s) = —sgnIIA (s), s

[s*, 0], and it has the following property:
A (6,°) =0, dlIA (0,°)/ds = 0, i=1,2, ..., n

Let s° ..., s°  denote all the zeros of the cocontrol, indexed in increasing order.
Obviously, p > n. We shall assume that

g) §,° 50, dlIA (s°)ds=+0, i=1,2, ..., p.

If s* is chosen to be fairly small, then s,° is an optimal initial time and S°y vy Sp°
are optimal control switching times in problem (3.1), z*(s5,°) = 4,7b,, u* (s) = —1 for s<Ts°.
The function IIA (s), s <{ 0, will have no zeros other than s°, ..., 8, and moreover IIA (s) >0

for s<Cs,°.
After solving the basic problems we find the vector

V=A,(T)m — (AAY) A° = A'bynn — (A A7) A° (3.7)
The vector A° is determined uniquely apart from a positive factor. We shall assume that
v IR+ AR =1
4. The main theorem. Our subsequent calculations are based on the following assertions.
Theorem. 1f conditions (a)-(g)are satisfied and u is sufficiently small, then problem
(1.1) has an optimal control expressible as
sgnAg(4,°), te[0,4]
sgn Ay (#°), tEtntl, i=2,3,...1
W, py=q— sgnd, ") te[t, T +psy|
(—DsgnAy @¢°), t=[T +psig, T +psy[, i=2,3,...,p
(— 1yPsgn Ay (1°), t= [T + psp, T

(4.1)
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where the functions

T=T(us =1 w, i=12 ..., Losio=s (W), (4.2)
i=12 ...,p
have the asymptotic expansions
T~ pT*,  t;~Jpktk, s~ Jpks* (4.3)
Throughout, the symbol I denotes summation from k=0 to k= oo,
Let ¢ (t p),t=I[0,T(p)l, be the vector of conjugate variables corresponding to Eq.(4.1)
by the maximum principle /8/,
nv = _(“Pj (T (P’)’ H)v ] = 11 21 ..y n‘)ly
i=1,2
where

A= —Wnsi (T (u), 1),
y e ey m)
Hvi®+ AR =1

Then the vector-functions

v (), A ()

have asymptotic expansions

v JpfvE, A~ Jpkak (4.4)
and, together with the functions (4.2), they solve the system of equations

Z(Tytyy oooy byS1y voey $p, Typ) =0 (4.5)
P (v, AT, W)bp)=0, j=1,2,...,1
Y (T +psi,v, b T,p)b(p)=0, i=1,2...,p
(vIP +1AM%/2 —1/2=0

where (¢, 8, ..., t, 51,

oS, I, p), t= [0, 7], is the trajectory of the singularly perturbed
and the control u(t, t, ..., &, 5,
of type (4.1); (¢, v;A T,p), tI0,T]

e Sp T,
is a solution of the adjoint system

wv
— 4@ w)=“ X “

system generated by the initial state =z (0) = a°
w, t= o, 71,

Y=

Proof.

(4.6)
Using Cauchy's formula to represent the solution of the singularly perturbed
system generated by the control u (¢, ¢, ..., &, &,

k) st T’ P’)! tE[Or Tlv
(T by ety Syyeensp T, 0) =F(0,T,u)2° +
t

we obtain
t
sgn Ay (6) Sods + ..
0

1
-+ sgn iy (5°) S Ppdt—

4.7)
LI
T+ps T
sgn Ay (2,°) S @dt — ... (—1)P S (pdt}
133 T+usp
e=F( T,p) bW (4.8)
Here F (i, T,pn), t<{0,Tl, is an (n + m) X (n + m) matrix-valued function, which is a
solution of the singularly perturbed equation
F'=—FA, F(I)=E (4.9)
and exhibits the following block structure:
F, F
F - 1 2

Fg F,
where Fi=F; (¢, T,pn),te=10, Tl,i=1,2, 3,4,
respectively.

asymptotic series

are matrices of orders n Xn, nXm mXn mxXm,
Using the boundary-function method of /6/, one can expand these matrices

in

Fr= ¥ [Fu (6, T) + I Fi (s)]
s=(t— ), tlo, T,

(4.10)
i=1,234



699

We emphasize that these are uniform asymptotic expansions. It is also essential here
that the functions ILF; (s), s <0, called the boundary terms, satisfy the estimates

” HkFi (S)" < o, exp (6){8)1 i = 11 21 3’ 4' k= 01 1’ LI (411)

where oy, Py are certain positive constants.
We will specify a few of the first terms of the expansions (4.10):

Fy = Ov' Fae = —A AR, (1, T), F30=0, Foyo=F,o(t, T) (4-12)
Fiy= A7YAF, (¢, T) A,A 7Y, Fy = —F, (8, T) 4,4,
Fy, =G (s), I F, =G (s) A4, I F3 =0
O,F, =0, IILLF; = 4A,A,7'G (s)

where F,(t, T),t=[0,T], isan mXm matrix-valued function, which is a solution of the
equation .
F,) = —F,A,, F,(I)=E (4.13)

and G(s), s <0, satisfies (3.5).
Let ¢, (¢ T, p), @, (¢, T, n), t =10, T], be vector-valued functions whose components are

respectively the first n and last m components of o (¢, T, w). Then, as is evident from (3.4),
(4.8), (4.10) and (4.12), we have the following uniform asymptotic expansions:

o1~ (s} + D" [@2x (6. T) + My, ()] (4.14)
@y~ Dt [@ex (8, T) + TIip, (5)]
Q1 = Fy, ke1by + Foxbs, Hk‘Pl = Hk+1F1b1 + i Fyb, (4'15)

Qox = Fs,paaby + Faba 1@y = UpsaFyby + F b,
Note that by (2.2), (2.3), (3.4), (4.12) and (4.13),

Pro (s T7) = —A724,0, (1), 920 (8, T°) = @ (), t = [0, T7] (4.16)
Myps (8) = 434, e (s), s<O

Letz(ty, -« 2 btsStoe v v Spy Ty W), Yy (ty, ...t Spv-.., 8p, T, p) be vector-valued functions whose
components are respectively the first n and lastm components of (4.7). As follows from (4.10)-
(4.12), (4.14), (4.15),

T N2 (tyy - e Sy e e S T) (4.17)
Y~ AW (s b S ooy 55 T)

t

fo= — AT A,y (0, T) 4 + sgn 8y (6§ @uodt -+ - (@18)
H
y T
+ sgn Ay (t,°) ‘S @100t — sgn Ay (2)) S @y dt +
-1 t
- 8y Sy l q
sendy (1) — § Mods + {Meds —... + (— 1) { Tgds
—c0 St 5y
t f T
Yo = Fo (0. T)y° + sgn Ay (") S Pao Bt + - - - + sgn By (tr°) tS P 42 — g By (tlc)s Pao At (4.19)
0 -1 g

ts
2= Fr (0. 7)2° + Fyx (0, T) y° + sgn 8 (1) § quedt + - ..«
[
4 T
+ sgn Ay (t:")‘tS Prx At — sgn Ay’ (¢,°) S Pux dt +
-1 [
8 8
sgn Ay (t,")[— S My19, ds + Sl'[,,_lcpl ds —...
e e

L i1
+ (— 1)t S g9, ds] — 2sgn Ay (¢)°) Z_:_l- %1- Q1 k-i (T, T)X
3. =1

[(81)’)— () + oo H (=P, k=1,2,...
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A similar formula is valid for yx, ¥2>1, with the sole difference that F,, is replaced by
Fgr, Foy by Fy, and oy, Iiy9, by  @u ILiup,, respectively.

Put At v, A Top) =0 (6, %, A, T, b (p), t = 1[0, T]. BAs is evident from (4.6), (4.8), (4.9),
A = puve, + Mo, But then, by (4.14), this function has a uniform asmyptotic expansion

A~ D pF[Ag (8 v, M T) + A (s, v, A)] (4.20)
Ao = Ny, B = V'@ + Moo, £ =1,2, ...
A = v + Mgy, A = v, + Mg, k=1,2,...

Note that (2.4), (3.6), (3.7) and (4.16) imply

By (8, V°,0°, I°) = Ap (1), t= [0, T7] (4.21)
ToA (s, v°, &) = A, (TO)MA (5) — 1), s << O

Let 8(s,v, M T,p) = A(T + ps,v, A, T, ), s<<O. By {(4.20) and the fact that t =T 4 us, we

have
8~ D ukd (s, v, A, T) (4.22)
k s s
st ot
8y = A (s, v, A) + E_E,T?AH (Tov, 2, T) (4.23)
Let h=1(t;, ..y t1uSy v v 0 Spy Ty vy o v oy Vs Ay o oy Ap)'y where v, i =1,2,...,n, are the
components of v and A; j=1,2,...,m, those of A Then system (4.5) may be written as
R(h,p)=0 (4.24)

Z(tys et Spee 2.8ps T,',L)

Y@y -eutn Sys e s 2 Sps T, p,)
Rh,py=|A0tpvMTop) j=12,...1
6(siv Vi;"y sz')y i == 1,_2,...,p

(v I+ AR/ — 1Y,

As follows from (4.17), (4.20), (4.22) and the estimates (4.11), the left-hand side of
Eg. (4.24) may be expanded asymptotically as

R (b ) ~ 20 R () (4.25)
E Y (PRI 78 Spree 85 T)
Yty oo s binSpy oo on8p, T)
Ry (h) = Aty v M, T), j=1,2,...,1 (4.26)
O (51 v, M T), i=1,2,...,p
e (v, A)

ro=(lvI®+IAMP/2~—172, r,=0, k>1

Define R (h,0) = R, (k). Then the vector-valued function R (k, p) is continuous in the
domain b —hy]l<<mg, 0 < p<<pg together with its partial derivatives with respect to the
components of h. Here m, M, are certain small positive numbers and

ho= (" - - %8 e s T v v A LAY
Relying on the fact that the controls u’(t),te< [0, T°], u* (s), s=[s,°, 0], are admissible in
problems (1.2), (3.1) and also on (4.16), (4.18), (4.19), (4.21), (4.23), (4.26), one can show
that R (hy, 0) =R, (hy) = 0.
It can be shown by direct differentiation that the Jacobian of system (4.24) has the
following structure:

»
o
"

, B
0

B, (4.27)
B

*

0
B, 0
0 0 ¥ A



-)
]
o

By = (—24,4,9, (¢ sgn Ag' () J =1.2,.. . D)
B,=<2c—1y4n¢(aﬂsgnAo(nﬂ,z—-i,& P
I 3 = (2(Po (tjo) sgn Ao (tjo)v j= 1,2,..., b
B, = diag (A, (t),7 = 1,2, .., 0, By = (9 ¢ j = 1,2, .., 1)
B, = diag (A, (T)dIIA (s,)ds, i =1, 2, ..., p)
= (e (s), i =1,2,...,p), Bg = {434, g (5¢) T o
i=1,2,...,p)
o = A;74.h, ,gL\ Ay (£, ¢ = —bysgn Ay (&)
es = (A ), i =1,2,..., 0

Usl h act thatct ow that the rank
of the matrlx obtalned from ( -th column is

l+p+n+m—1. Since

¥R () = A0 () =0, 7 =1,2,..., L vTip () +
A A4, I (5°) + Aby = A (THTA(s) =0, i=1,2,...,p

all the rows of this matrix are orthogonal to the vector (0,0, A”). Hence it follows that
the columns of I, with the exception of the (I 4 p 4 1)-th, are linearly independent. More-
over, they are orthogonal to the VELLUL 0, 'I‘\,ol, 0, 0, 0). But the I+ p-+1-th column is not
orthogonal to this vector, since A”b, = A,(T°) % 0, implying that the Jacobian is non-singular.
Thus, system(4.24) or, what is the same, (4.5) satisfies all the conditions of the Implicit
Function Theorem. This means that for sufficiently small p problem (1.1) has an admissible
control u°(t, p), t = [0, T (), of the type (4.1), and there exist vectors v (u), A(p) such that
the switching points ofu’(t, p)are the zeros of the function A, w)=vy ( Wb, 2100, T (W,

where ' (¢, p), t < [0, T (W), is a non-trivial solution of the adjoint system (4.6) with
T =T, vev(@ k=

Since the left-hand sides of system (4.5) can be expanded, in asymptotic series in integer
powers of p, it follows /9/ that the asymptotic expansions (4.3), (4.4) exist.

Note that A(t, u) =A@, v(w), AW, T (w, w), t= 10, T (Wl Hence it follows from (4.20),
(4.21) that there exists a constant f'\n for which

«2L1) Tnat T Fnlcn

[ At p) — Do (8) — Ap (T)HA (5) — DI < Cu
s=(@~T W t=I[0,Twl

Relying on this fact, assumptions (d) and (g) and the remarks in Sect.3 about the function
ITIA (s), s <0, one can show that for sufficiently small u the .cocontrol At p), t=[0, T (w)l,
has no zeros other than the switching points of the control u’(t, p), ¢t = [0, T (p)], where
w(t,p=—sgn A, p), t= [0, T(p). But this means that for sufficiently small u the admissible
control u®({t, w), t = [0, T (p)) satisfies the Pontryagin Maximum Principle /8/, and so it is an
optimal control. This completes the proof of the theorem.

5. Construction of asymptotic expansions. A control of type (4.1) with ¢;=1¢7°, j=1,2,

wlhosi=s’ i=1,2,...,p; =T 1is an asymptotically Q-optimal control for problem (1.1).
To contruct an N-optimal control (N >1), it suffices to find the coefficients
. i=102, .., sk i=14,2,..,p; T k=1,2,...,N (5.1)

of the expansions (4.3). Let
K K k fa K s
b=t s s TR v v A AT

hy () = 3y w*hy

Throughout, Zy denotes summation from k£ =0 to k=N. Expand the vector-valued func-

tion Syu'Ry (hy (u)) in powers of u up to order N inclusive and equate the expansion coefficients
of lin dete

to zero. This (nvps non-sinqular svstems ear amuatione for succassiva vminatrion of
g systems o 1ear equations for successive determination of
the vectors &k, k=1,2,..., N:
T n fL N V-4 3
Ly, = —nl {72p) {9.2)
6R1 , 92 Ra
Tohy = — (ho) by — h Rt (ho) By — Ry (hy)
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We note that thanks to the structure of the Jacobian I, (see (4.27)) each of systems

(5.2) splits: we first use a system of order n +m 4+ 1 to determine the coefficients T, vk,

xk
1,2

and then, independently, determine the remaining coefficients i =1,2,...,L s i=
s e« P If l=m—1,p=n, i.e., if the cocontrols of the basic problems have no

zeros that are not support points, the initial system (4.5) splits: the optimal time and
switching times (4.1) can be found independently of the Lagrange multipliers.  This naturally
implies a corresponding decomposition of systems (5.2).

Successively solving systems (5.2), we find the coefficients (5.1) and construct poly-

nomials
™Ww= T T, V() = Sebitt, j=1,2,...,1
¥ () = Sypts, i=1,200p
The control (4.1), where & =¢t (), j=1,2,., ., Lss =8, i=1,2,...,p; T = T¥ (),

is an asymptotically N-optimal control for problem (1.1).

the

The above asymptotic -approximations to the roots of Eq.(4.24) can be used for
exact solution of the equation and hence of the problem as a whole, for a prescribed value

of the small parameter. To that end one uses the "updating" procedure of /5/, i.e, Newton's
method, to find the roots of Eq.(4.24), taking hy (n) as the initial approximation. When

thi

s is done the matrix dR(k, u)/0k can be replaced by its asymptotic expansion, whose coef-

ficients are determined from those of the expansion (4.25).

We might mention in conclusion that there-are no essential difficulties in devising an

analogous algorithm for multidimensional control systems.

12/

6. Example. Consider the following example, which describes the control of a DC motor

pr=—z— Ly tou 2=, «(1)=0 (6:1)
1

. k 1
= e———— 2 e y 0= 0' T —0
Ut A 4 y(O)=y° y(T)

lul<1, J (@)= T—min

All constants in problem (6.1) are positive. Applying our algorithm, we find an asymp-

totically O-optimal control:

_[—1, te[0, T°4 nus°[
e ={77 (St 4 1]

and a l-optimal control:

ul(t,p.)={_1’ te=[0, T° 4+ “(T1+S°)+u’sl[
1, t=[T°+ p(T 4 s°) 4 p3st, T° +uT)
=1+ ¥°/b), by = Kb/ k), = _In2
Tt = —yi/by, st = —ky /by — 2,/b;

kb ° o
5= (30— exp (1) — T’:”‘T),(i — oxp (—T1°) + T° exp(—T°)) +
R@EF )by ook povfe 2kt o kT
g @R T - pppenp(T) (4 R e M)
vo= ) e o by — o) — 1’:f°k (1 — exp (—T°)}+ T°exp (—T°)) +

bo(2 — 25° — exp (—T°))
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STABILIZATION OF WEAKLY LINEAR SYSTEMS*®
V.A. KOLOSOV

The problem of stabilizing bilinear systems, characterized by the
presence of a small parameter in the bilinear part of the system, is
considered. The result is an approximate method for synthesizing a
stabilizing contrel /1-3/ in bilinear systems, in the case of a
performance index. Estimates are derived for the error with respect to
the performance index.
1. Statement of the problem. Suppose we are given a bilinear control system
=¢eN@ru-+ Bt s= R, 2z(0)=2z45t2>0 (1.1}
Here N (f) is a measurable and bounded nXn matrix for t>>0; B({)e= R, is a vector-
valued function, also measurable and bounded for { > 0. The problem is to determine a scalar
control in the class U of bounded controls w=1u{f,2), >0 1is a small parameter.

We wish to synthesize an optimal control in class U, which stabilizes system (1.1). The
performance index is

1@ =Sowz+r@ruyar (1.2)

Here @ () 1is a continuocus, bounded, uniformly positive definite n X n matrix, and A (D)
is a positive definite scalar function; the prime denotes transposition. Integration with
respect to t is always from Q to oo,

2. Successive approximations algorithm. Let us assume that for the values of e under
consideration problem (1.1}, (1.2) has a solution. Bellman's equation is

inf [0V/0t + u (B (1) + &V 02)/dV/dz + 2'Q (Hz + X () u?] =0, 2.1)
uzl
< V=V @ )

It follows from (2.1) that the following expression defines an optimal control:
(£ 2) = — = M () (B () + &N () z) 9V /oz 2.2)

Expand the function V¥ in powers of ¢:
V=V, )+ eV (t;2) +... (2.3)
*Prikl.Matem. Mekhan.,53,6,890~894,1989




